Обдукция при замыкании бассейнов океанского типа 

Предполагаемые главные механизмы обдукции: I - При столкновении активной континентальной окраины со спрединговым хребтом, по Н. Кристенсену и М. Сэлсбари (1975); II — при столкновении пассивной континентальной окраины с фронтом океанской (энсиматической) островной дуги, по Э. Мурсу (1970); III — при закрытии бассейнов океанского типа

Офиолиты п-ова Тайтао на юге Чили: океанская литосфера с возрастом 3,7 млн лет, обдуцированная в плиоцене при столкновении Андской актииной окраины с очередным сегментом Чилийского спредингового хребта, по Р. Форзиту и др., (1986). Справа — геологическая карта п-ова Тайтао, слева — схема размещения закартированного участка.1 — главный сместитель зоны субдукции; 2 — ось спрединга и линейные магнитные аномалии на Чилийском хребте, цифры обозначают номер аномалии; 3 — трансформные разломы, в том числе Чилоэ (Ч), Дарвин (Д) и Тайтао (Т); 4 — современная вулканическая цепь Андской активной окраины; 5 — предполагаемое продолжение зоны спрединга, перекрытое континентальной плитой; 6 — 9 — офиолиты п-ова Тайтао (ОФ): серпентинизированные и тектонизированные перидотиты (6), габбро (7), комплекс параллельных долеритовых даек (5), толеит-базальтовые подушечные лавы с осадочными прослоями (5) ; 10 — плиоценовые гранодиориты и риолиты анатектического происхождения (3,7 — 4,1 млн лет); 11 — морские отложения кайнозоя; 12 — доюрские метаморфические породы. Литосферные плиты: Н — Наска; А — Антарктическая; ЮА — Южно-Американская

Обдукция и метаморфизм

Нормальная коллизия континентальной и океанической литосферы выражается субдукцией. Только местами появляется такое сочетание тектонических условий, при котором океанская литосфера бывает надвинута на континентальную окраину. В этом убеждают фрагменты океанической литосферы в десятки - первые сотни километров, залегающие в виде пологих офиолитовых аллохтонов поверх осадочных или вулканических формаций на пассивных и активных континентальных окраинах. В настоящее время этот процесс нигде не происходит, но плиоценовый эпизод установлен на сочленении Чилийского спредингового хребта с Андской активной окраиной.

В большинстве случаев датировки свидетельствуют о том, что океаническая литосфера была молодая, тонкая и не охлажденная с относительно низкой средней плотностью и поэтому, в соответствии с изостазией, обладала высоким гипсометрическим положением. Последнее является необходимым условием обдукции.

В надвинутых фрагментах представлена только верхняя часть океанской литосферы: вся кора (осадки I слоя, базальты и долеритовые и II слоя, габброиды и расслоенный гипербазит-базитовый комплекс III слоя) и несколько километров (до 10 км в наиболее мощных пластинах) перидотитов верхней мантии. Это означает, что при обдукции произошло отслаивание верхней части океанской литосферы. Только она надвигалась затем на континентальную окраину, а остальная, нижняя часть перидотитов литосферы перемещалась и деформировалась на глубине.
Отслаивание верхов литосферы начиналось в условиях океанского дна, где (судя по геофизическим данным) при сжатии формируются сколы, переходящие в надвиги. В ряде случаев по пологим надвигам (трастам) происходило сдваивание разреза верхов океанической литосферы и уже такой сдвоенный пакет обдуцировал на континентальную окраину.

Обдукция сопровождается динамотермальным метаморфическим воздействием горячих перидотитов низов литосфсрной пластины на породы автохтона. В случае сдваивания разреза метаморфизм наблюдается и в основании верхней пластины. В низах литосферной пластины появляются и нарастают разлинзование и милонитизация, ориентированные параллельно контакту и секущие первичную текстуру и зональность перидотитов. Далее, за поверхностью контакта, следует сам метаморфический ореол мощностью в несколько сотен метров: амфиболиты и мафические гранулиты, переходящие вниз в зеленые сланцы, а затем в неметаморфизованные вулканиты или осадочные породы. Этот ореол несет на себе признаки формирования в условиях средних (500—850°) или высоких (700—1000°) температур при высоких термических градиентах (до 2—3° на 1 м) и давлении 5—10 кбар. Радиологические определения возраста метаморфических минералов датируют надвигание перидотитов.

Иногда внизу, на контакте с автохтоном, при метаморфизме появляются глаукофановые минеральные ассоциации, свидетельствующие о более высоких давлениях и низких температурах. Непосредственно у контакта, кроме того, нередко наблюдаются постметаморфические деформации, в том числе тектоническое перемешивание апоперидотитовых милонитов с метаморфическими породами. В амфиболитах и зеленых сланцах Омана установлено, что такие деформации возобновлялись там несколько раз при неуклонно снижавшихся температурах.

Подсчитано, что надвигающиеся литосферные пластины мощностью от 3—6 до 10—15км могут обусловить давления, необходимые для их «базального метаморфического ореола». Нужные для этого температуры могут быть на соответствующих глубинах только в самой молодой океанской литосфере (около 600° при возрасте 10 Му), а при большей ее древности требуется дополнительный разогрев за счет трения. Поэтому возраст литосферы, к моменту отслаивания и надвигания аллохтонной пластины, вероятно, не мог быть более 20—30 Ма. Это согласуется с датировками, согласно которым формирование океанской литосферы и ее обдукция разделяются небольшим отрезком времени. Изучая «базальные метаморфические ореолы», Г. Уильямс, У. Смит, А. Николя и другие исследователи существенно пополнили представления о происхождении и обдукции пластин океанической литосферы.

Геодинамические механизмы обдукции разнообразны, можно различать два главных случая: обдукцию на границе океанского бассейна и обдукцию при его замыкании.

Обдукция на краю океанского бассейна происходит как у активных, так и у пассивных его окраин. Н. Кристенсен и М. Сэлси (1975) предложили модель обдукции при столкновении спредингового хребта с активной континентальной окраиной.

Если хребет простирается приблизительно паралльно окраине, то в ходе субдукции континентальная плита перекроет ближайшее его крыло и придет в соприкосновение с поднятым краем другого крыла, которое в результате может оказаться надвинутым. При дальнейшем сближении литосферных плит возможно возобновление субдукции, а на континентальной окраине останется надвинутая на нее пластина океанской литосферы. При таком механизме отделение пластины будущего аллохтона происходит по границе совсем еще тонкой литосферы и астеносферы.

Именно эта модель нашла подтверждение при исследованиях того отрезка Андской зоны субдукции (46—47° ю. ш.), где поглощается Чилийский спрединговый хребет. Многочисленные трансформные разломы делят его на сегменты, вытянутые под острым углом к желобу. Сегмент, ограниченный разломами Трес-Монтес и Тайтао, субдуцировал 2,5—4 Ма в районе Тайтао. Его перекрытие континентальной корой сопровождалось прогревом, образованием палингенных магматических расплавов, которые интрудировали морские отложения верхнего миоцена в непосредственной близости от желоба. Так на Тайтао появились мелкие тела гранодиоритов и риолитов с возрастом 3,6 Ма.

Там же Р. Форзит и др.,1986,картировали океаническую пластину площадью 210 км2, которая обдуцировала на континентальную окраину вслед за внедрением гранодиоритов и находится приблизительно в 10км от ее границы. Это образованая на восток-северо-восток пологая моноклиналь, где снизу вверх следуют: серпентинизированные и тектонизированные перидотиты; массивные, не расслоенные габброиды, комплекс параллельных даек долерита (как и вся моноклиналь, они простираются параллельно осям спрединга Чилийского хребта); подушечные базальты с фораминиферами плиоцена в осадочных прослоях и с радиологической датировкой 3,7 Ма. Судя по пространственно-временным соотношениям, эта литосфера, только что образовавшаяся, принадлежала западному крылу хребта и при столкновении с краем континента была на него надвинута.

С. Канде и др., 1987, провели детальное геофизическое изучение подводной части этого тройного сочленения и показали, что севернее Тайтао уже подошел к желобу и начал погружаться следующий сегмент гребня Чилийского хребта. Рифтовая долина приближается к континентальному склону желоба под острым углом, заполняется турбидитами и скрывается склоном, который в этом месте становится круче. Уже субдуцировавшее продолжение рифтовой долины обнаруживается по резкому повышению над ним теплового потока в нижней части склона. Вполне возможно, что и на этом сегменте результатом столкновения будет обдукция литосферной пластины.

Необходимые для обдукции предпосылки создает не сближение с островной дугой, а сама обстановка сжатия. В океанической литосфере вблизи окраины образуется скол, который, выполаживаясь, отслаивает литосферную пластину. Дальнейшее пододвигание одного крыла под другое можно рассматривать как заложение зоны субдукции, и если скол был наклонен от континента, то все события, вплоть до обдукции, последуют по модели Э. Мурса, при этом появление островодужных вулканитов и их количество будут зависеть от того, успеет ли субдукция дойти до магмогенерирующих глубин.

Зоны субдукции, возникавшие при подобном ходе событий вблизи пассивных континентальных окраин, не только эфемерны, но и специфичны по геодинамике - в обдуцированных аллохтонах широко представлены комплексы типа Троодос (на Кипре), в которых наличие параллельных даек и другие признаки формирования посредством спрединга сочетаются с чертами островодужной геохимической специализации, а мощность коры пониженная. Дж. Пирс с соавторами (1984) рассматривают их как особую категорию офиолитов, образующихся над зоной субдукции (supra-subduction zone ophiolites) в обстановке интенсивного ориентированного растяжения.

Обдукция при замыкании бассейнов океанского типа - обдуцированные фрагменты вблизи глубинных офиолитовых швов Средиземноморско-Гималайского и других складчатых поясов позволяют связать их происхождение с замыканием малых океанских бассейнов. Если раскрытие таких бассейнов сменяется их сжатием, то высокий тепловой поток благоприятствует отслаиванию литосферных пластин. Сравнительно высокое гипсометрическое положение молодой океанической литосферы и погруженные под уровень моря плечи утоненной континентальной коры на краях таких спрединговых бассейнов способствуют обдукции. При полном смыкании континентального обрамления структурный шов воздымается, а на дне смежных эпиконтинентальных бассейнов появляется уклон, обеспечивающий дальнейшее гравитационное перемещение обдуцированных пластин океанической литосферы, сопровождаемое формированием олистостром.

Обдукция молодой океанической литосферы возможна и при замыкании краевых морей. Примером служит описанное И. Диэлом (1977) надвигание фрагментов океанической коры на южноамериканский борт Патагонского задугового бассейна при его закрытии в середине мела.

Каждый эпизод обдукции оставляет в строении континентальной окраины отчетливый след в виде перемещенного на нее фрагмента океанической литосферы. И все же относительная роль этого тектонического процесса на конвергентных границах плит чрезвычайно мала. Согласно Р. Колману (1984), все обдуцированные породы фанерозоя составляют около 0,001% от современной коры дна океанов. Если учесть приблизительное количество океанической коры, субдуцировавшей в позднем мезозое и кайнозое, то окажется, что оно в сотни тысяч раз превышает объем пород, обдуцированных за это же время.

Ophiolite

Хостинг от uCoz